Skip to content

rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis

  • Rapin, I. & Tuchman, R. F. Autism: Definition, neurobiology, screening, diagnosis. Pediatr. Clin. N. Am. 55, 1129–1146 (2008).

    Article 

    Google Scholar 

  • Hahler, E.-M. & Elsabbagh, M. Autism: A global perspective. Curr. Dev. Disord. Rep. 2, 58–64 (2015).

    Article 

    Google Scholar 

  • American Psychiatric Pub. Diagnostic and Statistical Manual of Mental Disorders 5th edn. (American Psychiatric Pub, 2013).

    Book 

    Google Scholar 

  • Geschwind, D. H. & State, M. W. Gene hunting in autism spectrum disorder: On the path to precision medicine. The Lancet Neurol. 14, 1109–1120 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Jahedi, A., Nasamran, C. A., Faires, B., Fan, J. & Müller, R.-A. Distributed intrinsic functional connectivity patterns predict diagnostic status in large autism cohort. Brain Connect. 7, 515–525 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, C., Geng, H., Liu, W. & Zhang, G. Prenatal, perinatal, and postnatal factors associated with autism: A meta-analysis. Medicine 96, e6696 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hertz-Picciotto, I. et al. The charge study: An epidemiologic investigation of genetic and environmental factors contributing to autism. Environ. Health Perspect. 114, 1119–1125 (2006).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sandin, S. et al. The heritability of autism spectrum disorder. JAMA 318, 1182–1184 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carvalho, E. A., Santana, C. P., Rodrigues, I. D., Lacerda, L. & Bastos, G. S. Hidden Markov models to estimate the probability of having autistic children. IEEE Access 8, 99540–99551 (2020).

    Article 

    Google Scholar 

  • Elsabbagh, M. et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 5, 160–179 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hayes, S. A. & Watson, S. L. The impact of parenting stress: A meta-analysis of studies comparing the experience of parenting stress in parents of children with and without autism spectrum disorder. J. Autism Dev. Disord. 43, 629–642 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Durkin, M. S. et al. Autism screening and diagnosis in low resource settings: challenges and opportunities to enhance research and services worldwide. Autism Res. 8, 473–476 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Webb, S. J., Jones, E. J., Kelly, J. & Dawson, G. The motivation for very early intervention for infants at high risk for autism spectrum disorders. Int. J. Speech Lang. Pathol. 16, 36–42 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rogers, S. J. et al. Autism treatment in the first year of life: A pilot study of infant start, a parent-implemented intervention for symptomatic infants. J. Autism Dev. Disord. 44, 2981–2995 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rutter, M., LeCouteur, A. & Lord, C. Autism Diagnostic Interview Revised (adi-r) (Western Psychological Services, 2003).

    Google Scholar 

  • Lord, C. et al. Autism Diagnostic Observation Schedule, (ados-2) Modules 1–4 (Western Psychological Services, 2012).

    Google Scholar 

  • Kamp-Becker, I. et al. Diagnostic accuracy of the ados and ados-2 in clinical practice. Eur. Child Adolesc. Psychiatry 27, 1193–1207 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Falkmer, T., Anderson, K., Falkmer, M. & Horlin, C. Diagnostic procedures in autism spectrum disorders: A systematic literature review. Eur. Child Adolesc. Psychiatry 22, 329–340 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kassraian-Fard, P., Matthis, C., Balsters, J. H., Maathuis, M. H. & Wenderoth, N. Promises, pitfalls, and basic guidelines for applying machine learning classifiers to psychiatric imaging data, with autism as an example. Front. Psych. 7, 177 (2016).

    Google Scholar 

  • Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Matthews, P. M. & Jezzard, P. Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 75, 6–12 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abraham, A. et al. Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. Neuroimage 147, 736–745 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Di Martino, A. et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Di Martino, A. et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. Data 4, 1–15 (2017).

    Article 

    Google Scholar 

  • Sundermann, B., Beverborg, M. O. & Pfleiderer, B. Toward literature-based feature selection for diagnostic classification: A meta-analysis of resting-state fmri in depression. Front. Hum. Neurosci. 8, 692 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tahmasian, M. et al. A systematic review on the applications of resting-state fmri in Parkinson’s disease: Does dopamine replacement therapy play a role? Cortex 73, 80–105 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Milham, M. P. et al. The adhd-200 consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012).

    Google Scholar 

  • Hull, J. V. et al. Resting-state functional connectivity in autism spectrum disorders: A review. Front. Psychiatry 7, 205 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dosenbach, N. U. et al. Prediction of individual brain maturity using fmri. Science 329, 1358–1361 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Plitt, M., Barnes, K. A. & Martin, A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage Clin. 7, 359–366 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Wohlin, C. et al. Experimentation in Software Engineering (Springer, 2012).

    Book 

    Google Scholar 

  • Whiting, P. F. et al. Quadas-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 155, 529–536 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Khosla, M., Jamison, K., Kuceyeski, A. & Sabuncu, M. 3d convolutional neural networks for classification of functional connectomes. Preprint at http://arxiv.org/abs/1806.04209 (2018).

  • Bi, X.-A. et al. Analysis of asperger syndrome using genetic-evolutionary random support vector machine cluster. Front. Physiol. 9, 1646 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Crimi, A., Dodero, L., Murino, V. & Sona, D. Case-control discrimination through effective brain connectivity. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), 970–973. https://doi.org/10.1109/ISBI.2017.7950677 (2017).

  • Bi, X.-A., Wang, Y., Shu, Q., Sun, Q. & Xu, Q. Classification of autism spectrum disorder using random support vector machine cluster. Front. Genet. 9, 18 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Liao, D. & Lu, H. Classify autism and control based on deep learning and community structure on resting-state fmri. In 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI), 289–294 (IEEE, 2018).

  • Dvornek, N. C., Ventola, P. & Duncan, J. S. Combining phenotypic and resting-state fmri data for autism classification with recurrent neural networks. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 725–728 (IEEE, 2018).

  • Chaitra, N. & Vijaya, P. A. Comparing univalent and bivalent brain functional connectivity measures using machine learning. In 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN), 1–5. https://doi.org/10.1109/ICSCN.2017.8085741 (2017).

  • Guo, X. et al. Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11, 460 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dvornek, N. C., Ventola, P., Pelphrey, K. A. & Duncan, J. S. Identifying autism from resting-state fmri using long short-term memory networks. In International Workshop on Machine Learning in Medical Imaging, 362–370 (Springer, 2017).

  • Subbaraju, V., Suresh, M. B., Sundaram, S. & Narasimhan, S. Identifying differences in brain activities and an accurate detection of autism spectrum disorder using resting state functional-magnetic resonance imaging: A spatial filtering approach. Med. Image Anal. 35, 375–389 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Dodero, L., Minh, H. Q., Biagio, M. S., Murino, V. & Sona, D. Kernel-based classification for brain connectivity graphs on the riemannian manifold of positive definite matrices. In 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 42–45. https://doi.org/10.1109/ISBI.2015.7163812 (2015).

  • Zhou, Y., Yu, F. & Duong, T. Multiparametric mri characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS ONE 9, e90405 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhu, Y. et al. Reveal consistent spatial-temporal patterns from dynamic functional connectivity for autism spectrum disorder identification. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 106–114 (Springer, 2016).

  • Sartipi, S., Kalbkhani, H. & Shayesteh, M. G. Ripplet ii transform and higher order cumulants from r-fmri data for diagnosis of autism. In 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), 557–560 (IEEE, 2017).

  • Parisot, S. et al. Spectral graph convolutions for population-based disease prediction. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 177–185 (Springer, 2017).

  • Gupta, S. et al. Ambivert degree identifies crucial brain functional hubs and improves detection of alzheimer’s disease and autism spectrum disorder. NeuroImage Clin. 25, 102186 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Khosla, M., Jamison, K., Kuceyeski, A. & Sabuncu, M. R. Ensemble learning with 3d convolutional neural networks for functional connectome-based prediction. Neuroimage 199, 651–662 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Sartipi, S., Shayesteh, M. G. & Kalbkhani, H. Diagnosing of autism spectrum disorder based on garch variance series for rs-fmri data. In 2018 9th International Symposium on Telecommunications (IST), 86–90 (IEEE, 2018).

  • DSouza, A. M., Abidin, A. Z. & Wismüller, A. Classification of autism spectrum disorder from resting-state fmri with mutual connectivity analysis. In Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10953, 109531D (International Society for Optics and Photonics, 2019).

  • Bi, X.-A. et al. The genetic-evolutionary random support vector machine cluster analysis in autism spectrum disorder. IEEE Access 7, 30527–30535 (2019).

    Article 

    Google Scholar 

  • El-Gazzar, A. et al. A hybrid 3dcnn and 3dc-lstm based model for 4d spatio-temporal fmri data: An abide autism classification study. In OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging, 95–102 (Springer, 2019).

  • Zhang, M. et al. Comparison of neural networks’ performance in early screening of autism spectrum disorders under two mri principles. In 2019 International Conference on Networking and Network Applications (NaNA), 338–343 (IEEE, 2019).

  • Mostafa, S., Tang, L. & Wu, F.-X. Diagnosis of autism spectrum disorder based on eigenvalues of brain networks. IEEE Access 7, 128474–128486 (2019).

    Article 

    Google Scholar 

  • Zhao, Y., Dai, H., Zhang, W., Ge, F. & Liu, T. Two-stage spatial temporal deep learning framework for functional brain network modeling. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 1576–1580 (IEEE, 2019).

  • Mellema, C., Treacher, A., Nguyen, K. & Montillo, A. Multiple deep learning architectures achieve superior performance diagnosing autism spectrum disorder using features previously extracted from structural and functional mri. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 1891–1895 (IEEE, 2019).

  • Anirudh, R. & Thiagarajan, J. J. Bootstrapping graph convolutional neural networks for autism spectrum disorder classification. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3197–3201 (IEEE, 2019).

  • Bengs, M., Gessert, N. & Schlaefer, A. 4d spatio-temporal deep learning with 4d fmri data for autism spectrum disorder classification. Preprint at http://arxiv.org/abs/2004.10165 (2020).

  • Sherkatghanad, Z. et al. Automated detection of autism spectrum disorder using a convolutional neural network. Front. Neurosci. 13, 1325 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Sairam, K., Naren, J., Vithya, G. & Srivathsan, S. Computer aided system for autism spectrum disorder using deep learning methods. Int. J. Psychosoc. Rehabil. 23, 01 (2019).

    Google Scholar 

  • Rajesh, G. & Pannirselvam, S. Lucid ant colony optimization based denoiser for effective autism spectrum disorder classification. Int. J. Adv. Sci. Technol. 28, 865–876 (2019).

    Google Scholar 

  • Bhaumik, R., Pradhan, A., Das, S. & Bhaumik, D. K. Predicting autism spectrum disorder using domain-adaptive cross-site evaluation. Neuroinformatics 16, 197–205 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Li, J., Ji, J., Liang, Y., Zhang, X. & Wang, Z. Deep forest with cross-shaped window scanning mechanism to extract topological features. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 688–691 (IEEE, 2019).

  • Mahanand, B. S., Vigneshwaran, S., Suresh, S. & Sundararajan, N. An enhanced effect-size thresholding method for the diagnosis of autism spectrum disorder using resting state functional mri. In 2016 Second International Conference on Cognitive Computing and Information Processing (CCIP), 1–6. https://doi.org/10.1109/CCIP.2016.7802874 (2016).

  • Vigneshwaran, S., Mahanand, B. S., Suresh, S. & Sundararajan, N. Using regional homogeneity from functional mri for diagnosis of asd among males. In 2015 International Joint Conference on Neural Networks (IJCNN), 1–8. https://doi.org/10.1109/IJCNN.2015.7280562 (2015).

  • Dekhil, O. et al. A personalized autism diagnosis cad system using a fusion of structural mri and resting-state functional mri data. Front. Psychiatry 10, 392 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zu, C. et al. Identifying high order brain connectome biomarkers via learning on hypergraph. In International Workshop on Machine Learning in Medical Imaging, 1–9 (Springer, 2016).

  • Huang, F. et al. Multi-template based auto-weighted adaptive structural learning for asd diagnosis. In International Workshop on Machine Learning in Medical Imaging, 516–524 (Springer, 2019).

  • Chen, C. P. et al. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin. 8, 238–245 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dekhil, O. et al. Using resting state functional mri to build a personalized autism diagnosis system. In Biomedical Imaging (ISBI 2018), 2018 IEEE 15th International Symposium on, 1381–1385 (IEEE, 2018).

  • Iidaka, T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63, 55–67 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kam, T.-E., Suk, H.-I. & Lee, S.-W. Multiple functional networks modeling for autism spectrum disorder diagnosis. Hum. Brain Mapp. 38, 5804–5821 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H., Parikh, N. A. & He, L. A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front. Neurosci. 12, 491 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Price, T., Wee, C.-Y., Gao, W. & Shen, D. Multiple-network classification of childhood autism using functional connectivity dynamics. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 177–184 (Springer, 2014).

  • Zhao, Y., Ge, F., Zhang, S. & Liu, T. 3d deep convolutional neural network revealed the value of brain network overlap in differentiating autism spectrum disorder from healthy controls. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 172–180 (Springer, 2018).

  • Aghdam, M. A., Sharifi, A. & Pedram, M. M. Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks. J. Digit. Imaging 32, 899–918 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brahim, A., El Hassani, M. H. & Farrugia, N. Classification of autism spectrum disorder through the graph fourier transform of fmri temporal signals projected on structural connectome. In International Conference on Computer Analysis of Images and Patterns, 45–55 (Springer, 2019).

  • Dammu, P. S. & Bapi, R. S. Employing temporal properties of brain activity for classifying autism using machine learning. In International Conference on Pattern Recognition and Machine Intelligence, 193–200 (Springer, 2019).

  • Kazeminejad, A. & Sotero, R. C. Topological properties of resting-state fmri functional networks improve machine learning-based autism classification. Front. Neurosci. 12, 1018 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lanka, P. et al. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 14, 1–39 (2019).

    Google Scholar 

  • Spera, G. et al. Evaluation of altered functional connections in male children with autism spectrum disorders on multiple-site data optimized with machine learning. Front. Psychiatry 10, 620 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martial, E. E. T., Hu, L. & Yuqing, S. Characterising and predicting autism spectrum disorder by performing resting-state functional network community pattern analysis. Front. Hum. Neurosci. 13, 203 (2019).

    Google Scholar 

  • Wang, C., Xiao, Z. & Wu, J. Functional connectivity-based classification of autism and control using svm-rfecv on rs-fmri data. Phys. Med. 65, 99–105 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Interpretable feature learning using multi-output Takagi-Sugeno-Kang fuzzy system for multi-center asd diagnosis. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 790–798 (Springer, 2019).

  • Yang, X., Islam, M. S. & Khaled, A. A. Functional connectivity magnetic resonance imaging classification of autism spectrum disorder using the multisite abide dataset. In 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 1–4 (IEEE, 2019).

  • Yuan, D., Zhu, L. & Huang, H. Prediction of autism spectrum disorder based on imbalanced resting-state fmri data using clustering oversampling. In Tenth International Conference on Signal Processing Systems, vol. 11071, 110710W (International Society for Optics and Photonics, 2019).

  • Aghdam, M. A., Sharifi, A. & Pedram, M. M. Combination of rs-fmri and smri data to discriminate autism spectrum disorders in young children using deep belief network. J. Dig. Imaging 31, 1–9 (2018).

    Article 

    Google Scholar 

  • Emerson, R. W. et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci. Transl. Med. 9, 2882 (2017).

    Article 

    Google Scholar 

  • Sen, B., Borle, N. C., Greiner, R. & Brown, M. R. A general prediction model for the detection of adhd and autism using structural and functional mri. PLoS ONE 13, e0194856 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tolan, E. & Isik, Z. Graph theory based classification of brain connectivity network for autism spectrum disorder. In International Conference on Bioinformatics and Biomedical Engineering, 520–530 (Springer, 2018).

  • Eill, A. et al. Functional connectivities are more informative than anatomical variables in diagnostic classification of autism. Brain Connect. 9, 604–612 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mastrovito, D., Hanson, C. & Hanson, S. J. Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia. NeuroImage Clin. 18, 367–376 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buchweitz, A. & Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage Clin. 17, 16–23 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Jun, E. & Suk, H.-I. Region-wise stochastic pattern modeling for autism spectrum disorder identification and temporal dynamics analysis. In International Workshop on Connectomics in Neuroimaging, 143–151 (Springer, 2017).

  • Wong, E., Anderson, J. S., Zielinski, B. A. & Fletcher, P. T. Riemannian regression and classification models of brain networks applied to autism. In International Workshop on Connectomics in Neuroimaging, 78–87 (Springer, 2018).

  • Zhu, Y., Zhu, X., Kim, M., Yan, J. & Wu, G. A tensor statistical model for quantifying dynamic functional connectivity. In International Conference on Information Processing in Medical Imaging, 398–410 (Springer, 2017).

  • Ren, Y. & Wang, S. Exploring functional connectivity biomarker in autism using group-wise sparse representation. In Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy, 21–29 (Springer, 2019).

  • Dekhil, O. et al. Identifying personalized autism related impairments using resting functional mri and ados reports. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 240–248 (Springer, 2018).

  • Ren, Y. et al. Identifying autism biomarkers in default mode network using sparse representation of resting-state fmri data. In 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 1278–1281. https://doi.org/10.1109/ISBI.2016.7493500 (2016).

  • Chen, Z., Ji, J. & Liang, Y. Convolutional neural network with an element-wise filter to classify dynamic functional connectivity. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 643–646 (IEEE, 2019).

  • El Gazzar, A., Cerliani, L., van Wingen, G. & Thomas, R. M. Simple 1-d convolutional networks for resting-state fmri based classification in autism. In 2019 International Joint Conference on Neural Networks (IJCNN), 1–6 (IEEE, 2019).

  • Huang, F. et al. Sparse low-rank constrained adaptive structure learning using multi-template for autism spectrum disorder diagnosis. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 1555–1558 (IEEE, 2019).

  • Sidhu, G. Locally linear embedding and fmri feature selection in psychiatric classification. IEEE J. Transl. Eng. Health Med. 7, 1–11 (2019).

    Article 

    Google Scholar 

  • Wang, C., Xiao, Z., Wang, B. & Wu, J. Identification of autism based on svm-rfe and stacked sparse auto-encoder. IEEE Access 7, 118030–118036 (2019).

    Article 

    Google Scholar 

  • Wang, M. et al. Identifying autism spectrum disorder with multi-site fmri via low-rank domain adaptation. IEEE Trans. Med. Imaging 39, 644–655 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, J. et al. Sparse multiview task-centralized ensemble learning for asd diagnosis based on age- and sex-related functional connectivity patterns. IEEE Trans. Cybern. 48, 1–14. https://doi.org/10.1109/TCYB.2018.2839693 (2018).

    ADS 
    Article 

    Google Scholar 

  • Zhou, D., Wang, J., Jiang, B., Guo, H. & Li, Y. Multi-task multi-view learning based on cooperative multi-objective optimization. IEEE Access 6, 19465–19477. https://doi.org/10.1109/ACCESS.2017.2777888 (2018).

    Article 

    Google Scholar 

  • Chen, H. et al. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—A multi-center study. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 1–9 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Dodero, L., Sambataro, F., Murino, V. & Sona, D. Kernel-based analysis of functional brain connectivity on grassmann manifold. In International Conference on Medical Image Computing and Computer-Assisted Intervention, 604–611 (Springer, 2015).

  • Wee, C.-Y., Yap, P.-T. & Shen, D. Diagnosis of autism spectrum disorders using temporally distinct resting-state functional connectivity networks. CNS Neurosci. Therap. 22, 212–219 (2016).

    Article 

    Google Scholar 

  • Yahata, N. et al. A small number of abnormal brain connections predicts adult autism spectrum disorder. Nat. Commun. 7, 11254 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bernas, A., Aldenkamp, A. P. & Zinger, S. Wavelet coherence-based classifier: A resting-state functional mri study on neurodynamics in adolescents with high-functioning autism. Comput. Methods Progr. Biomed. 154, 143–151 (2018).

    Article 

    Google Scholar 

  • Huang, H. et al. Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40, 833–854 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kazeminejad, A. & Sotero, R. C. The importance of anti-correlations in graph theory based classification of autism spectrum disorder. BioRxiv. https://doi.org/10.1101/557512 (2019).

    Article 

    Google Scholar 

  • Saeed, F., Eslami, T., Mirjalili, V., Fong, A. & Laird, A. Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data. Front. Neuroinform. 13, 70 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tejwani, R., Liska, A., You, H., Reinen, J. & Das, P. Autism classification using brain functional connectivity dynamics and machine learning. Preprint at http://arxiv.org/abs/1712.08041 (2017).

  • Xing, X., Ji, J. & Yao, Y. Convolutional neural network with element-wise filters to extract hierarchical topological features for brain networks. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 780–783 (IEEE, 2018).

  • Ghiassian, S., Greiner, R., Jin, P. & Brown, M. R. Using functional or structural magnetic resonance images and personal characteristic data to identify adhd and autism. PLoS ONE 11, e0166934 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Uddin, L. Q. et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, J. et al. Multi-task diagnosis for autism spectrum disorders using multi-modality features: A multi-center study. Hum. Brain Mapp. 38, 3081–3097 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brown, J. A., Rudie, J. D., Bandrowski, A., Van Horn, J. D. & Bookheimer, S. Y. The ucla multimodal connectivity database: A web-based platform for brain connectivity matrix sharing and analysis. Front. Neuroinform. 6, 28 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15, 273–289 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Craddock, R. C., James, G. A., Holtzheimer, P. E. III., Hu, X. P. & Mayberg, H. S. A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2012). https://www.r-project.org/.

  • Doebler, P. & Holling, H. Meta-analysis of diagnostic accuracy with mada. R Packag. 1, 15 (2015).

    MATH 

    Google Scholar 

  • Park, S. H. & Han, K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286, 800–809 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Pearson Education Limited, 2016).

    MATH 

    Google Scholar 

  • James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning Vol. 112 (Springer, 2013).

    MATH 
    Book 

    Google Scholar 

  • Arbabshirani, M. R., Plis, S., Sui, J. & Calhoun, V. D. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. Neuroimage 145, 137–165 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Pereira, F., Mitchell, T. & Botvinick, M. Machine learning classifiers and fmri: A tutorial overview. Neuroimage 45, S199–S209 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Tillmann, J. et al. Evaluating sex and age differences in adi-r and ados scores in a large european multi-site sample of individuals with autism spectrum disorder. J. Autism Dev. Disord. 48, 2490–2505 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Van Wijngaarden-Cremers, P. J. et al. Gender and age differences in the core triad of impairments in autism spectrum disorders: A systematic review and meta-analysis. J. Autism Dev. Disord. 44, 627–635 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Mayes, S. D. & Calhoun, S. L. Impact of iq, age, ses, gender, and race on autistic symptoms. Res. Autism Spectrum Disord. 5, 749–757 (2011).

    Article 

    Google Scholar 

  • Loomes, R., Hull, L. & Mandy, W. P. L. What is the male-to-female ratio in autism spectrum disorder? A systematic review and meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 56, 466–474 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Maenner, M. J. et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, united states, 2016. MMWR Surveill. Summ. 69, 1 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jensen, C. M., Steinhausen, H.-C. & Lauritsen, M. B. Time trends over 16 years in incidence-rates of autism spectrum disorders across the lifespan based on nationwide danish register data. J. Autism Dev. Disord. 44, 1808–1818 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Fombonne, E. Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Lai, M.-C., Lombardo, M. V., Auyeung, B., Chakrabarti, B. & Baron-Cohen, S. Sex/gender differences and autism: Setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 54, 11–24 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Russell, G., Steer, C. & Golding, J. Social and demographic factors that influence the diagnosis of autistic spectrum disorders. Soc. Psychiatry Psychiatr. Epidemiol. 46, 1283–1293 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Giarelli, E. et al. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil. Health J. 3, 107–116 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Begeer, S. et al. Sex differences in the timing of identification among children and adults with autism spectrum disorders. J. Autism Dev. Disord. 43, 1151–1156 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Karmiloff-Smith, A. Challenging the use of adult neuropsychological models for explaining neurodevelopmental disorders: Developed versus develop ing brains: The 40th sir frederick bartlett lecture. Q. J. Exp. Psychol. 66, 1–14 (2013).

    Article 

    Google Scholar 

  • Segall, J. M. et al. Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophr. Bull. 35, 82–95 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. 107, 4734–4739 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Carp, J. The secret lives of experiments: Methods reporting in the fmri literature. Neuroimage 63, 289–300 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Kim, K. W., Lee, J., Choi, S. H., Huh, J. & Park, S. H. Systematic review and meta-analysis of studies evaluating diagnostic test accuracy: A practical review for clinical researchers-part I. General guidance and tips. Korean J. Radiol. 16, 1175–1187 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jones, C. M., Ashrafian, H., Darzi, A. & Athanasiou, T. Guidelines for diagnostic tests and diagnostic accuracy in surgical research. J. Investig. Surg. 23, 57–65 (2010).

    Article 

    Google Scholar 

  • Fusar-Poli, L. et al. Diagnosing asd in adults without id: Accuracy of the ados-2 and the adi-r. J. Autism Dev. Disord. 47, 3370–3379 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Mazefsky, C. A. & Oswald, D. P. The discriminative ability and diagnostic utility of the ados-g, adi-r, and gars for children in a clinical setting. Autism 10, 533–549 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression Vol. 398 (Wiley, 2013).

    MATH 
    Book 

    Google Scholar 

  • Iakoucheva, L. M., Muotri, A. R. & Sebat, J. Getting to the cores of autism. Cell 178, 1287–1298 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wheelwright, S., Auyeung, B., Allison, C. & Baron-Cohen, S. Defining the broader, medium and narrow autism phenotype among parents using the autism spectrum quotient (aq). Mol. Autism 1, 1–9 (2010).

    Article 

    Google Scholar 

  • Pierce, K. Early functional brain development in autism and the promise of sleep fmri. Brain Res. 1380, 162–174 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Graham, A. M. et al. The potential of infant fmri research and the study of early life stress as a promising exemplar. Dev. Cogn. Neurosci. 12, 12–39 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Bom, P. R. & Rachinger, H. A generalized-weights solution to sample overlap in meta-analysis. Res. Synth. Methods 11, 812–832 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Devillé, W. L. et al. Conducting systematic reviews of diagnostic studies: Didactic guidelines. BMC Med. Res. Methodol. 2, 9 (2002).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • American Psychiatric Pub. Diagnostic and Statistical Manual of Mental Disorders 4th edn. (American Psychiatric Pub, 2000).

    Google Scholar 

  • Biondi-Zoccai, G. Diagnostic Meta-Analysis: A Useful Tool for Clinical Decision-Making (Springer, 2018).

    Book 

    Google Scholar 

  • Community, C. Review Manager (revman). Version 5.3. https://community.cochrane.org/help/tools-and-software/revman-5/revman-5-download (Accessed 6 January 2020).

  • Reitsma, J. B. et al. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J. Clin. Epidemiol. 58, 982–990 (2005).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Macaskill, P., Gatsonis, C., Deeks, J., Harbord, R. & Takwoingi, Y. Chapter 10: Analysing and presenting results. In Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version, Vol. 1 (2010).

  • Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64 (1961).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • Polanin, J. R. & Pigott, T. D. The use of meta-analytic statistical significance testing. Res. Synth. Methods 6, 63–73 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Source link